Large-scale solar magnetic field mapping: I

نویسنده

  • Kenneth H Schatten
چکیده

This article focuses on mapping the Sun's large-scale magnetic fields. In particular, the model considers how photospheric fields evolve in time. Our solar field mapping method uses Netlogo's cellular automata software via algorithms to carry out the movement of magnetic field on the Sun via agents. This model's entities consist of two breeds: blue and red agents. The former carry a fixed amount of radially outward magnetic flux: 10(23) Mx, and the latter, the identical amount of inward directed flux. The individual agents are distinguished, for clarity, by various shades of blue and red arrows whose orientation indicates the direction the agents are moving, relative to the near-steady bulk fluid motions. The fluid motions generally advect the field with the well known meridional circulation and differential rotation. Our model predominantly focuses on spatial and temporal variations from the bulk fluid motions owing to magnetic interactions. There are but a few effects that agents have on each other: i) while at the poles, field agents are connected via the Babcock - Leighton (B - L) subsurface field to other latitudes. This allows them to undertake two duties there: A) the B - L subsurface field spawns the next generation of new magnetic field via new agents, and B) the B - L subsurface field attracts lower-latitude fields via the "long-range" magnetic stress tension; ii) nearby agents affect each other's motion by short-range interactions; and iii) through annihilation: when opposite field agents get too close to each other, they disappear in pairs. The behavior of the agents' long- and short-range magnetic forces is discussed within this paper as well as the model's use of internal boundary conditions. The workings of the model may be seen in the accompanying movies and/or by using the software available via SpringerPlus' website, or on the Netlogo (TM) community website, where help is readable available, and should all these fail, some help from the author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules

Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...

متن کامل

How magnetic helicity ejection helps large scale dynamos

There is mounting evidence that the ejection of magnetic helicity from the solar surface is important for the solar dynamo. Observations suggest that in the northern hemisphere the magnetic helicity flux is negative. We propose that this magnetic helicity flux is mostly due to small scale magnetic fields; in contrast to the more systematic large scale field of the 11 year cycle, whose helicity ...

متن کامل

Magnetic field inversions at 1 AU: Comparisons between mapping predictions and observations

Large-scale magnetic field configurations are important for the transport of solar wind strahl electrons, which are suprathermal and directed along the field outward from the Sun. Strahl electrons are routinely used to infer not only the field configurations between the Sun and Earth but also local field structures, i.e., field inversions, where the magnetic field is locally folded back or inve...

متن کامل

Magnetic confinement of the solar tachocline

Two distinct classes of magnetic confinement models exist for the solar tachocline. The “slow tachocline” models are associated with a large-scale primordial field embedded in the radiative zone. The “fast tachocline” models are associated with an overlying dynamo field. I describe the results obtained in each case, their pros and cons, and compare them with existing solar observations. I concl...

متن کامل

Pulsar Rotation Measures and the Large-scale Structure of Galactic Magnetic Field

The large-scale magnetic field of our Galaxy can be probed in three dimensions using Faraday rotation of pulsar signals. We report on the determination of 223 rotation measures from polarization observations of relatively distant southern pulsars made using the Parkes radio telescope. Combined with previously published observations these data give clear evidence for large-scale counterclockwise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013